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NOTE

The Master-Equation
Formulation of Chromatography Theory

GEORGE H. WEISS

NATIONAL INSTITUTES OF HEALTH
BETHESDA, MARYLAND

Summary

De Clerk et al. have recently proposed that if chromatography theory were
based on a master equation rather than a Fokker-Planck equation, asym-
metries could readily arise [Separation Sci., 1,443 (1966)]. It is shown here
that the master-equation description of an infinitely long homogeneous
column also leads to a Gaussian limiting distribution.

In a recent paper de Clerk et al. have proposed a stochastic ap-
proach to chromatography theory based on the master equation (1).
In it they suggest that their theory generalizes previous theories
in that the limiting distribution is not Gaussian. It is the purpose of
this note to point out that even if the master equation is regarded as
a valid starting point for chromatography theory, a Gaussian dis-
tribution is characteristic at sufficiently long times provided physi-
cal properties are homogeneous along the column.

Let us consider a random walk on a discrete infinite line as the
starting point of our investigation, and let p(n AL,t) = p,(t) denote

the probability of being at point n AL at time ¢, where n=. . . ,
—2,~1,0,1,2, . ... We shall assume that p,(t) satisfies a master
equation of the form
P =3 Apuit) ()
where
A=—3" A, ()
J=—
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in which the prime denotes omission of the zero term and A; = 0
for j # 0. The assumption of homogeneous physical properties
along the line is equivalent to the requirement that the set of rate
constants appearing in the equation for p,(t) are independent of n.
To solve Eq. (1), let us introduce the generating functions

g(0,t) = i pa(t) exp (in ALS)
o (3)
A(B) = 2 A,(1 — ginale)

The inversion formula relating p,(t) to g(6,t) is
AL wiAL

2 —m/AL

pm(t) g(6,t) exp (—im ALG) d6 (4)
If Eq. (1) is multiplied by exp (in AL6) and summed over all n,
the following equation results:

ig_
51 = A (5)

Without loss of generality we can take the initial conditions to be

Po(0) = 1, p(0) =0, n # 0, or g(,0) = 1. The solution to Eq. (5) is

g(0,t) = exp[—A(6)t] and moments of p,(t) are easily calculated as
— N r (AT _1dg

l‘l‘r(t) - 2 n (AL) pn(t) - ir aer 6=0 (6)

n=—w
In particular, the first three moments are
My = V]t [Lg(t) = Vgt + V%t2 Mg(t) = V3t + 3V1V2t2 + V:i,’tg (7)

where ®
v,=(ALy 3 n'A, (8)

n=—o

The fact that p(t) approaches infinity does not imply that p,(t)
cannot tend to a Gaussian limit, nor does the fact that the third
central moment

ma(t) = ps(t) — Sua(t)ps(t) + 2ui(t) = vyt (9)
goes to infinity with ¢ imply it.*

® One could conclude that {p,(f)} does not tend to a Gaussian limit if u,(#)/
[1i(8)]** had a limit different from zero. This is clearly not the case for the present
models.
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In fact, the Gaussian limit can be demonstrated in a heuristic way
from the representation

AL /AL
Pult) =5 exp[—A(9)t — im AL§] df (10)

~m/AL
We note, first of all, that Re A(6) = 0, so that for sufficiently large
t the only contributions to the integral come from neighborhoods
of the zeros of A(8) = 0. One of these zeros is § =0. For A(f,) =0
for 8, # 0 to hold, it is necessary that the A, be periodic in n (2),
which would lead to an unreasonable physical model. (In general
A, is a monotone-nonincreasing function of |n|.) Hence 8 = 0 is the
only zero of interest. The function A(6) can be expanded around

0=0as

v,0? n ivg6®

A(O) = _'“/10 + 2 6

. (11)
Let us now rewrite exp[—A(8)t] as

exp[—A(0)t] = exp (ivlt()—ﬁt—ez> (1 _ gt e+ .- ) (12)

2 6
so that
% wlAL _ iv;;toa V4t04 L. .)
Pl ~ o | s (1 6 ' 24 '
2
exp [if)(vlt —m AL) — v2;0 ] de (13)

The indicated integrals can be evaluated by noting that only the
limit AL — 0 is of interest, so that the limits of integration in Eq.
(13) go to (—»,»). We therefore find the asymptotic representation

© toz
Pmlt) ~ %f exp [— V22 + i0(vit — m AL)]

_ il )
(1 L0y s d6

- (2—;\,,2[—;@ exp — [(m AL — v:t)*/(2,1)]

[1+v3(v1t—mAL) <3_(V1t—mAL)2)+ . ] 14)

vit vat>
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In the region of space for which

— 2
lim (m AL — v,t)

t> t*

=0 (15)

i.e., in the region centered at the moving mean, »,¢, we have the
Gaussian limit:

() ~ AL [_ (m AL — u,t)z]
Pmit) ™ Qmpyty €XP Tt

for sufficiently large ¢. Higher terms in the expansion of Eq. (14)
likewise go to zero as t — ». Hence the use of a master equation
in a homogeneous medium still leads to a Gaussian limit. The pre-
ceding argument can be made rigorous and the conclusions can be
checked on the particular example A, # 0,A_; # 0,A,=0,r # 0, 1.
In this case an exact solution to the master equation is

(16)

A_ n/2
palt) = (52) emmrnr, [21(4,8)17) (a7
and the Gaussian approximation can be verified in detail as in (3).

The use of the moment equations (25)-(28) of de Clerk et al. leads
to correct results for the central moments, but the underlying par-
tial differential equations [Eqs. (23) or (30) of that paper] can lead
to incorrect conclusions. In particular, the solution to Eq. (23) can
become negative (4). The difficulty of finding an improvement over
the Fokker-Planck approximation has been discussed in the liter-
ature of statistical mechanics (5). The analysis just presented does
not lead to an explanation or to an adequate description of asym-
metric profiles without introducing spatial inhomogeneities into
either a master equation or a Fokker-Planck description of the
chromatographic process.
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